1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
penelopemcadam edited this page 2025-02-06 18:31:39 +03:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses reinforcement discovering to boost reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial identifying feature is its support knowing (RL) step, which was utilized to improve the model's responses beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, eventually improving both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, implying it's equipped to break down intricate questions and factor through them in a detailed way. This assisted thinking process allows the design to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation design that can be integrated into different workflows such as representatives, sensible thinking and information interpretation tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, making it possible for effective reasoning by routing inquiries to the most pertinent expert "clusters." This method enables the model to focus on different problem domains while maintaining overall efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for surgiteams.com reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and links.gtanet.com.br 70B). Distillation describes a procedure of training smaller, more effective models to mimic the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and examine designs against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation boost, create a limitation increase request and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Establish permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid hazardous content, and evaluate models against essential safety criteria. You can execute precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, trademarketclassifieds.com it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.

The model detail page offers important details about the design's capabilities, pricing structure, and implementation guidelines. You can discover detailed usage directions, including sample API calls and code snippets for integration. The design supports numerous text generation tasks, bytes-the-dust.com consisting of content creation, code generation, and question answering, using its support discovering optimization and CoT thinking capabilities. The page likewise consists of deployment options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of circumstances (in between 1-100). 6. For example type, select your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up innovative security and facilities settings, including virtual personal cloud (VPC) networking, service function permissions, and file encryption settings. For many use cases, the default settings will work well. However, for production deployments, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the deployment is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can experiment with various prompts and change design specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal results. For instance, content for inference.

This is an exceptional way to explore the design's thinking and text generation abilities before incorporating it into your applications. The play ground provides immediate feedback, assisting you understand how the model responds to various inputs and letting you tweak your triggers for ideal outcomes.

You can rapidly evaluate the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free approaches: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to help you select the technique that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser displays available models, with details like the company name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card shows key details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if applicable), showing that this model can be registered with Amazon Bedrock, higgledy-piggledy.xyz permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The design details page consists of the following details:

    - The design name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the design, it's advised to review the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the immediately created name or develop a custom-made one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of instances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment procedure can take numerous minutes to finish.

    When release is total, your endpoint status will alter to InService. At this moment, the model is ready to accept inference requests through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations.
  5. In the Managed releases area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop innovative options using AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the reasoning efficiency of big language models. In his leisure time, Vivek delights in hiking, gratisafhalen.be watching movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist consumers accelerate their AI journey and unlock company value.